Today's Hours: 8:00am - 10:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Fast R, Sköld O.
    J Biol Chem. 1977 Nov 10;252(21):7620-4.
    The regulation of uracil uptake in bacteria was studied in bacteriophage T4-infected cells, where host-specific, stable RNA synthesis is completely shut-off by phage, and where phage-specific RNA synthesis, which is not stringently regulated, could be followed by a continuous incorporation of uracil. This incorporation into phage RNA was found to be dependent on the allelic state of the rel gene and it was thus severely restricted under stringent conditions. This was not the case with adenine, which was incorported into RNA to almost the same extent under stringent and relaxed conditions, respectively. The inhibition of uracil uptake under proceeding RNA formation, which was furthermore found to be reversed by addition of chloramphenicol, indicated a specific mechanism governing the cellular entry of uracil. This is suggested to involve the allosteric regulation of uracil phosphoribosyltransferase (EC 2.4.2.9.). The enzyme was partially purified by ammonium sulfate precipitation and gel chromatography. The dependence on GDP and GTP as positive effectors was demonstrated. The stimulatory effect of GTP was abolished in vitro by the addition of guanosine 5'-diphosphate 3-diphosphate, which is known to accumulate during amino acid starvation in stringent bacteria. The reversible inactivation of the enzyme by dilution suggested a subunit structure of uracil phosphoribosyltransferase.
    Digital Access Access Options